
Multivariate Interpolation by Invariant Vandermonde Matrices 
 

Introduction 
The method of multivariate interpolation described here has been independently derived from first 

principles. An effort is made to ensure common terms are used for signposting (e.g., Newton-

Gregory divided difference method and Vandermonde matrices). There is no claim to originality 

here, the purpose is to set out a practical and efficient method of multivariate interpolation with 

partial derivatives. Any claim to originality would rest in the practicality of the simple python library 

that implements the method and can be freely used as an open-source library available from PyPi 

and GitHub. This python library implements an efficient invariant inverted Vandermonde matrix. This 

is not a new idea – Vandermonde matrices are independent of values - but the extension to the use 

of inverted Vandermonde matrices as invariant for iterated interpolation is computationally 

efficient. In the biological application for which this method was derived (an electron density 

topology application) the matrices are simply saved as datafiles rendering all interpolation and 

partial derivative calculations simple matrix multiplications. In the abstracted PsuMultivarse python 

library implementation described here there is the use of a singleton object - the matrices are 

calculated once and only once in the lifetime of the application when required. The decision to leave 

them as calculated is made for inspection of the code and for flexibility. 

Summary 
In those cases of interpolation where the coefficients of a polynomial are required (e.g., for 

differentiation), the solutions can be efficiently found by a form of traditional interpolation but using 

an invariant Vandermonde matrix, which substantially improves performance. 

For multidimensional curves, a multivariate polynomial can be fitted of the form (for the 3-

dimensional case) 

f(x,y,z)= a + bx + cy + dxy + ex2…. etc 

Or more generally: 

f(x,y,z) = ∑ 𝐶𝑖𝑥𝑖𝑦𝑖

𝑥=𝑛
𝑦=𝑛
𝑧=𝑛

𝑥=0
𝑦=0
𝑧=0

𝑧𝑖     

 

It can be shown that the solution to this for any curve, in any dimension, to any degree, can be 

described by a system of simultaneous equations, and that the solution to these for a given 

degree/dimension is invariant. The fact that it is invariant makes for fast computational algorithms 

for multivariate interpolation to a high degree. 

This paper shows that there is no impediment to high dimension multivariate fitting as the method is 

equivalent to tri-directional tri-polynomial fitting which avoids the dimension problem inherent in 

matrices.  



Assumptions 
This method assumes that the data is mapped onto a 0 indexed unit based orthogonal coordinate 

system. This is of course not always the case, for example in the case of the probability density 

function resulting from an x-ray crystallographic experiment. In this case, there exists a function that 

maps points from real space into coordinate space and back again, so it is simply a case of mapping 

there prior to interpolation, and then mapping back.  

Conventions 
We use the python numpy convention of matrices when printed out, so we assume the top left of 

the matrix to be (0,0). (and now I need to change everything below because it is all muddled). 

A simple demonstration of the 2d linear case. 
If we want to linearly interpolate a square with values as shown, where trivially the centre point by 

linear interpolation is 2.5: 

We can define the values as a matrix, where the matrix is not just a 

convenient way of storing the data, but the indices in the 

dimensional directions give us the x/y/z values at that point. 

VM = 
1 5
1 3

 

 

We know we are expecting a polynomial, this can also be expressed as a matrix, where we also use 

the dimensional indices, this time the matrix represents the polynomial such that the sum of all the 

terms is our function. 

f(x,y) = 
𝑎𝑥0𝑦0 𝑐𝑥1𝑦0

𝑏𝑥0𝑦1 𝑑𝑥1𝑦1 

Which might look simpler as 

f(x,y) = 
𝑎 𝑏𝑥

𝑐𝑦 𝑑𝑥𝑦
 

But needs only to expressed as the coefficients, as the variable terms are implied by the position 

f(x,y) = 
𝑎 𝑏
𝑐 𝑑

 

The calculation of these coefficients will give a unique polynomial fitted to the values. 

With 4 knowns and 4 unknowns this can be done as a system of simultaneous equations, where, if 

we substitute in the x and y values at the appropriate places: 

f(0,0) = 1 = a + b.0 + c.0 + d.0.0 = a 

f(1,0) = 1 = a + b.1 + c.0 + d.1.0 = a+b 

f(0,1) = 5 = a + b.0 + c.1 + d.0.1 = a+c 

f(1,1) = 3 = a + b.1 + c.1 + d.1.1 = a+b+c+d 

Expressed as a matrix this gives us: 

[

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

] ∙ [

𝑎
𝑏
𝑐
𝑑

]=[

1
5
1
3

] 

The matrix above can be seen to be invariant, and not dependent on the values for this case. 

Definitions: 

o SE is the matrix that defines the simultaneous equations. 

o V is the vector of values (collapsed from the matrix) that are observed 



o CV is the vector of coefficients for the polynomial 

Then 

SE.CV = V 

So: 

SE-1.V = CV 

Therefore, the inverse of this matrix, is invariant for all 2d linear interpolation, which I have 

calculated as: 

[

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

]

−1

=  [

1 0 0 0
−1 1 0 0
−1 0 1 0
1 −1 −1 1

] 

Therefore 

[

𝑎
𝑏
𝑐
𝑑

]=[

1 0 0 0
−1 1 0 0
−1 0 1 0
1 −1 −1 1

] ∙ [

1
1
5
3

] = [

1
4
0

−2

] = CV 

So  

CM = [
1 4
0 −2

] 

 
And the function f(x,y) = 1 + 4x - 2xy 

If we substitute in (0.5,0.5) we get 1+2 - (2x0.5x0.5) = 2.5 as required. 



Verifying the inversion matrix in another simple case 
Let us take another case and check we get our expected values: 

 

 

Therefore 

[

𝑎
𝑏
𝑐
𝑑

]=[

1 0 0 0
−1 1 0 0
−1 0 1 0
1 −1 −1 1

] ∙ [

9
7

11
15

] = [

9
−2
2
6

] = CV 

 
So  

CM = [
9 −2
2 6

] 

 
And the function f(x,y) = 9  -2x + 2y + 6xy 

If we substitute in (0.25,0.2) we get 9 - (2x0.25) + (2x0.2) + (6x0.25x0.2) = 9 – 0.5 + 0.4 + 0.3 = 9.2 as 

required. 

 

The general case 
The general case for creating the simultaneous equation matrix SE and the value vector V is, in 

python code and C# code resp: 

For 3 dimensions, n degrees: 

import numpy as np 

def calcLinearAlgebraSE(degree): 

    width = degree + 1 

    simul = np.zeros((width*width*width, width*width*width)) 

    ser = -1 

    for i in range(0,width): 

        for j in range(0, width): 

            for k in range(0, width): 

                ser+=1 

                sec = -1 

                for ic in range(0, width): 

                    for jc in range(0, width): 

                        for kc in range(0, width): 

                            sec += 1 

                            seCoeff = math.pow(i, ic)*math.pow(j,jc)*math.pow(k,kc); 

                            simul[ser, sec] = seCoeff; 



 

    return simul 

 

 

    double[] valuesVec = new double[totalLength]; 

    int col = 0; 

    for (int i = 0; i < _width; ++i) 

    { 

        for (int j = 0; j < _width; ++j) 

        { 

            for (int k = 0; k < _width; ++k) 

            { 

                valuesVec[col] = _values[i, j, k];  

                ++col; 

            } 

        } 

    } 

 

The simultaneous equation is invariant for the degree, and the inverse of this matrix is also invariant 

for the degree. Although matrix inversion can be inefficient, it only needs to be done once, ever, in 

advance, so is not a bottleneck of this method. 

The general case for unwrapping the coefficient vector CV into the coefficient matric CM is, in C# 

code:  

For 3 dimensions, n degrees: 

double[] ABC = Matrices.multMatrixVector(invertedSim, valuesVec); 

int pos = 0; 

for (int i = 0; i < _width; ++i) 

{ 

    for (int j = 0; j < _width; ++j) 

    { 

            for (int k = 0; k < _width; ++k) 

            { 

                _coeffs[i,j,k] = ABC[pos];                         

                ++pos; 

            } 

    } 

} 

 

Partial Differentiation 
The partial differentiated polynomials are easily derived from the coefficient matrix by the simple 

method of moving in the direction of the variable that you are differentiating wrt and multiplying by 

the index of the original row. 

In our second example case: 

   v = 9  -2x + 2y + 6xy 

𝑑𝑣

𝑑𝑥
= −2 + 6𝑦 𝑎𝑛𝑑 

𝑑𝑣

𝑑𝑦
=  2 + 6x 

 

CM = [
9 −2
2 6

] => 𝐶𝑀𝑑𝑥 =   [
9 −𝟐
2 𝟔

] = > [
−𝟐
𝟔

] 

 

CM = [
9 −2
2 6

] => 𝐶𝑀𝑑𝑦 =   [
9 −2
𝟐 𝟔

] = > [𝟐 𝟔] 



By the same method of using the dimensional indices, this means that 

[
−𝟐
𝟔

] =  [
−2𝑥0𝑦0

𝟔𝑥0𝑦1 ] = −2 + 6𝑦 

And 

[𝟐 𝟔] =   [𝟐 𝟔𝒙] =  2 +  6𝑥 

 

Rule: move -1 in the direction of the dimension and multiply by the index. Note this continues to 

work if you want to differentiate twice, or first wrt to x then wrt y, etc.  

 

Partial differentiation as a 1-dimensional derivative 
Instead of creating a multivariate function for the above square, we could have performed linear 

interpolation 2 times to get the solution. 

We could have found that when x=0.25 

V = 8.5 + 3.5y 

And when y = 0.2 

V = 9.4 – 0.8x 

As solutions to the values this is unnecessary, they give the same answer. 

But as derivatives: 

 
𝑑𝑉

𝑑𝑦
=  3.5 

 
𝑑𝑉

𝑑𝑥
=  −0.8 

Evaluating the partial derivatives at (0.25,0.2) 

𝑑𝑣

𝑑𝑥
= 2-6y = -0.8 

𝑑𝑣

𝑑𝑦
=2+6x = 3.5 

So, at a given point, the solution to the derivatives for a multi-polynomial solution is the same as the 

partial derivatives. This extends to the second derivative and n-dimensions and thus facilitates the 

calculation of the Laplacian (2nd partial derivatives for 3-dimensional data) via a 1-dimensional 

method. The solution to multiple 1-dimensional polynomial fitting is a recursive algorithm using the 

Newton-Gregory divided difference method as found in the python library PsuMultivarse class 

PolySolver. It is less efficient than the multivariate method, but numerically stable to a higher 

degree. 

 

Partial differentiation, general formula 
General functions for partial differentiation wrt x,y or z are given in C# code: 

private double[,,] diffWRTx(double[,,] vals) 

{             

  double [,,] result = new double[vals.GetLength(0),vals.GetLength(1),vals.GetLength(2)]; 

  for (int i = 1; i < vals.GetLength(0); ++i) 

    for (int j = 0; j < vals.GetLength(1); ++j) 

      for (int k = 0; k < vals.GetLength(2); ++k) 

        result[i-1, j, k] = vals[i, j, k] * i; 

  return result; 

} 

 

private double[,,] diffWRTy(double[,,] vals) 

{ 



  double[,,] result = new double[vals.GetLength(0),vals.GetLength(1),vals.GetLength(2)];             

  for (int i = 0; i < vals.GetLength(0); ++i) 

    for (int j = 1; j < vals.GetLength(1); ++j) 

      for (int k = 0; k < vals.GetLength(2); ++k) 

       result[i, j-1, k] = vals[i, j, k] * j; 

  return result; 

} 

 

private double[,,] diffWRTz(double[,,] vals) 

{ 

  double[,,] result = new double[vals.GetLength(0),vals.GetLength(1),vals.GetLength(2)];             

  for (int i = 0; i < vals.GetLength(0); ++i) 

    for (int j = 0; j < vals.GetLength(1); ++j) 

      for (int k = 1; k < vals.GetLength(2); ++k) 

        result[i, j, k-1] = vals[i, j, k] * k; 

  return result; 

} 

 

Evaluating a function or a derivative 
Given the calculations of the values matrix or the derivatives as coefficient matrices as described, 

the evaluation of the value or derivative at any given point x,y,z is easily performed by the c# code: 

double getValue(double x, double y, double z, double[,,] coeffs) 

{          

  double value = 0;       

  for (int i = 0; i < coeffs.GetLength(0); ++i) 

  {          

    for (int j =0; j < coeffs.GetLength(1); ++j) 

    {          

      for (int k = 0; k < coeffs.GetLength(2); ++k) 

      { 

        double coeff = coeffs[i, j, k]; 

        double val = coeff * Math.Pow(z, i) * Math.Pow(y, j) * Math.Pow(x, k); 

        value += val; 

      }              

    }             

  } 

  return value; 

} 

 

As a replacement for the Newton-Gregory divided difference method 
If we want to fit a 1-dimensional polynomial to a sequence, we can follow this method. 

Let’s look for a quadratic fit to: 1,2,7 

f(x) = a + bx + c𝑥2 

CM = [𝑎 𝑏 𝑐] 

1 = a 

2 = a + b + c 

7 = a + 2c + 4b 

Expressed as a matrix this gives us: 

[
1 0 0
1 1 1
1 2 4

] ∙ [
𝑎
𝑏
𝑐

]=[
1
2
7

] 

 

[
1 0 0
1 1 0
1 2 4

]

−1

=  [
1 0 0

−1.5 2 −0.5
0.5 −1 0.5

] 

 

Therefore 



[
𝑎
𝑐
𝑑

]=[
1 0 0

−1.5 2 −0.5
0.5 −1 0.5

] ∙ [
1
2
7

] = [
1

−1
2

] = CV 

 
So  CM = [1 −1 2] 

And the function f(x) = 1 - x + 2𝑥2  is evidently correct. 

As before, this matrix is invariant for the fitting of all quadratic polynomials. 

Some precalculated matrices 
Note that the code above follows the format that z is the fastest changing axis, then y, then x. 

3 dimensional linear multivariate fit: 
f(x,y,z) = a + bx + cy + dz + exy + fxz + gyz + hxyz 
(nb the a,b,c etc are randomly assigned) 

Cubic 1-dimensional fit (spline): 
f(x) = a + bx + c𝑥2 + d𝑥3 
 

[[ 1.  0.  0.  0.  0.  0.  0.  0.] 

[-1.  1.  0.  0.  0.  0.  0.  0.] 

[-1.  0.  1.  0.  0.  0.  0.  0.] 

[ 1. -1. -1.  1.  0.  0.  0.  0.] 

[-1.  0.  0.  0.  1.  0.  0.  0.] 

[ 1. -1.  0.  0. -1.  1.  0.  0.] 

[ 1.  0. -1.  0. -1.  0.  1.  0.] 

[-1.  1.  1. -1.  1. -1. -1.  1.]] 

 

[[ 1.      0.          0.          0.    ] 

[-1.8333  3.         -1.5         0.3333] 

[ 1.     -2.5         2.         -0.5   ] 

[-0.1667  0.5        -0.5         0.1667]] 

 

 

5-degree 1-dimensional fit: 

[[ 1.0000e+00  0.0000e+00  0.0000e+00  0.0000e+00   0.0000e+00  0.0000e+00] 

 [-2.2833e+00  5.0000e+00 -5.0000e+00  3.3333e+00  -1.2500e+00  2.0000e-01] 

 [ 1.8750e+00 -6.4167e+00  8.9167e+00 -6.5000e+00   2.5417e+00 -4.1667e-01] 

 [-7.0833e-01  2.9583e+00 -4.9167e+00  4.0833e+00  -1.7083e+00  2.9167e-01] 

 [ 1.2500e-01 -5.8333e-01  1.0833e+00 -1.0000e+00   4.58333e-01 -8.3333e-02] 

 [-8.3333e-03  4.1667e-02 -8.3333e-02  8.3333e-02  -4.16667e-02  8.3333e-03]] 

 

 

Interpolation 
To interpolate over a set of data a multivariate or tri-directional solver needs to be created for every 

value required for the surrounding points. 

Computationally inefficient but memory efficient, an algorithm asks for the value at a given point, 

and the multivariate solver is created and returned at that point. 

Better computationally but with memory implications, the complete set of points that require 

interpolation is passed to the algorithm and a set of multivariate or tri-directional solvers is created 

for each mid-point. These can be used repeatedly for all points within a grid square, making a finer 

grained interpolation more efficient. 

Where the degree is greater than expanse of the grid, it can be reduced. See the figure for a 

depiction of the multivariate solvers that would be created to 

interpolate the shaded square. The interpolation grids are drawn around 

each midpoint. 

 

Both methods are implemented in PsuMultivarse in the Interpolator 

class. 



 

Conclusion 
1. The dimensionality is not an impediment to high dimensional multivariant interpolation as 

the multivariate function is equivalent to a tri-directional tri-polynomial interpolation 

requiring only the repeated calculation of 1d polynomials over the space, removing the 

dimensionality problem inherent in matrices. 

2. The speed of the 1d polynomial fit is much improved by the consideration that the matrix 

solution is invariant, and the solutions can be saved up to a required degree or calculated on 

the fly if greater than. Or, the matrix solutions can be stored as a singleton object, calculated 

only the first time they are used (see python library PsuMultivarse) 

3. The multivariate functions can be fitted using an invariant matrix so the speed problem 

inherent in calculating the matrix inverse for the simultaneous equations’ solution is not an 

impediment to speed of calculation – only the matrix size itself. 

4. The 2nd partial derivative of the multivariate function d2v/dx2 is equivalent to the 2nd 

derivative of the final x solution at a given point etc, so the partial derivatives of the 

multivariate function are equivalent to the set of 3 derivatives using the tri-directional 

method. 

5. A limit is the handling of floating points in computers. In the python implementation in 

PsuMultivarse the decimal places cause a break down for a degree of 7 degrees in 3d 

(512x512) and 20 degrees in 1d, (21x21). 

 


	Multivariate Interpolation by Invariant Vandermonde Matrices
	Introduction
	Summary
	Assumptions
	Conventions
	A simple demonstration of the 2d linear case.
	Verifying the inversion matrix in another simple case
	The general case
	Partial Differentiation
	Partial differentiation as a 1-dimensional derivative
	Partial differentiation, general formula
	Evaluating a function or a derivative
	As a replacement for the Newton-Gregory divided difference method
	Some precalculated matrices
	Interpolation
	Conclusion


